eISSN:2278-5299

International Journal of Latest Research in Science and Technology

DOI:10.29111/ijlrst   ISRA Impact Factor:3.35,  Peer-reviewed, Open-access Journal

A News Letter Sign UP!
TUNING THE CATALYTIC PROPERTY OF Pt/GRAPHENE USING SMALL ORGANIC MOLECULE

Research Paper Open Access

International Journal of Latest Research in Science and Technology Vol.2 Issue 6, pp 6-9,Year 2013

TUNING THE CATALYTIC PROPERTY OF PT/GRAPHENE USING SMALL ORGANIC MOLECULE

Wu Qin, Lingnan Wu, Dongteng Long, Changqing Dong, Yongping Yang

Correspondence should be addressed to :

Received : 19 November 2013; Accepted : 26 November 2013 ; Published : 31 December 2013

Share
Download 125
View 182
Article No. 10220
Abstract

We attempt to detect the possibility to modify the catalytic property of Pt/graphene using small organic molecule. Results of density functional theory calculations show that ssDNA segment and L-leucine modify the electron transfer at the interface, changing the electronic property and redox property of Pt/graphene catalyst system. L-leucine promotes electron transfer from Pt and increases the HOMO and LUMO of L-Pt/G system, while ssDNA segment lessens electron transfer from Pt and increases the HOMO and LUMO. With such electronic properties, L-leucine is beneficial to enhance the activity of Pt/graphene for catalytic α-dehydrogenation of ethanol while ssDNA fragment has adverse effects on the catalyzed α-dehydrogenation of ethanol. Reults will favour the design of active next-generation catalyst based on metal/graphene composite for novel applications.

Key Words   
Graphene, ethanol decomposition, Pt, DFT
Copyright
References
  1. K. Geim, K. S. Novoselov. The rise of graphene. Nature. Mater. 6, 183–191 (2007).
  2. Liu, J. T. Robinson, X. M. Sun, H. J. Dai. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 2008, 130(33): 10876-10877.
  3. R. Lomeda, C. D. Doyle, D. V. Kosynkin, W. F. Hwang, J. M. Tour. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 2008, 130(48): 16201-16206.
  4. F. Xu, Z. B. Liu, X. L. Zhang, Y. Wang, J. G. Tian, Y. Huang, Y. F. Ma, X. Y. Zhang, Y. S. A. Chen. Graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. AdV. Mater. 2009, 21(12): 1275-1279.
  5. L. Li, X. R. Wang, L. Zhang, S. W. Lee, H. J. Dai. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319(5867): 1229-1232.
  6. S. Wu, W. C. Ren, L.B. Gao, J. P. Zhao, Z.P. Chen, B.L. Liu, D.M. Tang, B. Yu, C.B. Jiang, and H.M. Cheng, Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 2009, 3(2): 411-417.
  7. Kim, L. J. Cote, F. Kim, J. Huang. X. Visualizing graphene based sheets by fluorescence quenching microscopy. J. Am. Chem. Soc. 2010, 132(1): 260-267.
  8. Wang, Y. M. Li, L. H. Tang, J. Lu, J. H. Li. Electrochemical DNA Sensors: From Nanoconstruction to Biosensing. Electrochem. Commun. 2009, 11(4): 889-892.
  9. J. Cote, R. Cruz-Silva, J. X. Huang. Flash reduction and patteming of graphite oxide and its polymer composite. J. Am. Chem. Soc. 2009, 131, 11027-11032.
  10. L. Guo, X. F. Wang, Q. Y. Qian, F. B. Wang, X. H. Xia. A green approach to the synthesis of graphene nanosheets. ACS Nano 2009, 3(9): 2653-2659.
  11. Gao, L. B. Alemany, L. J. Ci, P. M. Ajayan. New insights into the structure and reduction of graphite oxide. Nature Chem. 2009, 1: 403-408.
  12. J. Patil, J. L. Vickery, T. B. Scott, Mann, S. Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. AdV. Mater. 2009, 21(31): 3159-3164.
  13. B. Liu, Y. L. Li, Y. M. Li, J. H. Li, Z. X. Deng. Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal–carbon hybrid nanostructures via self-assembly. J. Mater. Chem. 2010, 20(5): 900-906.
  14. Han, X. G.; Li, Y. L.; Deng, Z. X. DNA-wrapped single walled carbon nanotubes as rigid templates for assembling linear gold nanoparticle arrays. Adv. Mater. 2007, 19(11). 1518-1522.
  15. L. Li, X. G. Han, Z. X. Deng. Grafting single-walled carbon nanotubes with highly hybridizable DNA sequences: Potential building blocks for DNA-programmed material assembly. Angew. Chem. Int. Ed. 2007, 46(39): 7481-7484.
  16. Bekyarova, M, E. Itkis, P. Ramesh, C. Berger, M. Sprinkle, W. A. de Heer, R. C. Haddon. Chemical modification of epitaxial graphene: Spontaneous grafting of aryl groups. J. Am. Chem. Soc. 2009, 131(4) 1336-1337.
  17. Bekyarova, M. E. Itkis, P. Ramesh, R. C. Haddon. Chemical approach to the realization of electronic devices in epitaxial graphene. Phys. Stat. Sol. (RRL) 2009, 3(6): 184-186.
  18. H. Wang, M. C. Hersam. Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene. Nat. Chem. 2009, 1: 206-211.
  19. Huang, S. Chen, X. Y. Gao, W. Chen, A. T. S. Wee. Structural and electronic properties of PTCDA thin films on epitaxial graphene. ACS Nano 2009, 3(11): 3431-3436.
  20. Zhang, Y. Qiao, F. Hao, L. Zhang, S. Wu, Y. Li, J. Li, X. M. Song. Fabrication of a biocompatible and conductive platform based on a singlestranded DNA/graphene nanocomposite for direct electrochemistry and electrocatalysis. Chem. Eur. J. 2010, 16(27): 8133-8139.
  21. Kannan, V.K. Pillai. Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal-carbon hybrid nanostructures via self-assembly, Journal of the Indian Institute of Science 2009, 89(4): 425-436.
  22. J. He, B. Song, D. Li, C. F. Zhu, W. P. Qi, Y. Q. Wen, L. H. Wang, S. P. Song, H. P. Fang, C. H. Fan. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater. 2010, 20(3): 453-459.
  23. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, G. N. Chen. A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed. 2009, 48(26): 4785-4787.
  24. W. Ch. Postma. Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Lett. 2010, 10(2): 420-425.
  25. B. Liu, Y. L. Li, Y. M. Li, J. H. Li, Z. X. Deng. Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal-carbon hybrid nanostructures via self-assembly. J. Mater. Chem. 2010, 20(5): 900-906.
  26. Liu, J. Y. Choi, T. S. Seo. DNA mediated water-dispersible graphene fabrication and gold nanoparticle-graphene hybrid. Chem. Commun. 2010, 46(16): 2844-2146.
  27. Rajesh, C. Majumder, H. Mizuseki, Y. Kawazoe. A theoretical study on the interaction of aromatic amino acids with graphene and single walled carbon nanotube Journal of Chemical Physics, 2009, 130(12): 124911(1-6).
  28. Ma, Z. X. Zhang, H. S. Jia, X. G. Liu Y. Y. Hao, B. S. Xua. Adsorption of cysteine molecule on intrinsic and Pt-doped graphene: A first-principle study. J. Mol. Struct. (Theochem) 2010, 955(1-3): 134-139.
  29. Pumera, R. Scipioni, H. Iwai, T. Ohno, Y. Miyahara, M. Boero. A mechanism of adsorption of β-Nicotinamide adenine dinucleotide on graphene sheets: Experiment and theory. Chem. Eur. J. 2009, 15(41): 10851-10856.
  30. D. Wuesta, A. Rochefortw. Strong adsorption of aminotriazines on graphene. Chem. Commun. 2010, 46(17): 2923-2925.
  31. G. Schmidt, K. Seino, M. Preuss, A. Hermann, F. Ortmann, F. Bechstedt. Organic molecule adsorption on solid surfaces: Chemical bonding, mutual polarisation and dispersion interaction. Appl. Phys. A 2006, 85(4): 387-397.
  32. Liu, S. Fu, B. Yuan, Y. Li, Z. Deng. Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J. Am. Chem. Soc. 2010, 132(21): 7279-7281.
  33. Delley. From molecules to solids with the Dmola approach. J. Chem. Phys. 2000, 113: 7756-7764.
  34. Hammer, L. B. Hansen, J. K. Nørskov. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 1999, 59: 7413−7421.
  35. D. Koelling, B. N. Harmon. A technique for relativistic spin-polarised calculations. J. Phys. C Suppl. 1977, 10: 3107−3114.
  36. Govind, M. Petersen, G. Fitzgerald, D. King-Smith and M. Andzelm. A generalized synchronous transit method for transition state location. J. Comput. Mater. Sci. 2003, 28(2): 250-258.
  37. Qin, X. Li, W. W. Bian, X. J. Fan, J. Y. Qi. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces. Biomaterials. 2010, 31(5): 1007-1016
To cite this article

Wu Qin, Lingnan Wu, Dongteng Long, Changqing Dong, Yongping Yang , " Tuning The Catalytic Property Of Pt/graphene Using Small Organic Molecule ", International Journal of Latest Research in Science and Technology . Vol. 2, Issue 6, pp 6-9 , 2013


Responsive image

MNK Publication was founded in 2012 to upholder revolutionary ideas that would advance the research and practice of business and management. Today, we comply with to advance fresh thinking in latest scientific fields where we think we can make a real difference and growth now also including medical and social care, education,management and engineering.

Responsive image

We offers several opportunities for partnership and tie-up with individual, corporate and organizational level. We are working on the open access platform. Editors, authors, readers, librarians and conference organizer can work together. We are giving open opportunities to all. Our team is always willing to work and collaborate to promote open access publication.

Responsive image

Our Journals provide one of the strongest International open access platform for research communities. Our conference proceeding services provide conference organizers a privileged platform for publishing extended conference papers as journal publications. It is deliberated to disseminate scientific research and to establish long term International collaborations and partnerships with academic communities and conference organizers.