# EFFECT OF REDUCTION IN GATE OXIDE THICKNESS WITH DIFFERENT MATERIALS FOR 100NM MOSFET

Sandeep Kumar\*<sup>1</sup>, K. K. Paliwal<sup>2</sup>, Sudhir Mahajan<sup>3</sup> <sup>1</sup>Assistant Professor, PIET, Samalkha, India <sup>2</sup>Professor, PIET, Samalkha, India <sup>3</sup>Assistant Professor, PIET, Samalkha, India <sup>1</sup>vlsi.sandeep@gmail.com,<sup>2</sup>captkkpaliwal@gmail.com,<sup>3</sup>sudhirmahajanbe53@rediffmail.com

Abstract – In recent years, the growth of IC industry has been driven by scaling of metal-oxide-semiconductor field effect transistor (MOSFET). The device has been used as a fast switch in compute intensive applications. The switching speed of a MOSFET is highly dependent on the choice of gate oxide material and its thickness. In this paper, we present a comparative analysis of the effect of scaling of gate oxide thickness on the performance of 100nm n-type MOSFET for different gate oxide materials.

Keywords - MOSFET, Gate oxide, Switching speed, Threshold voltage, Dielectric constant

#### I. INTRODUCTION

Metal-oxide-semiconductor field effect transistor (MOSFET) is the workhorse for contemporary digital design. This device can be used as switch in many applications and offers little parasitic effects [1]. Digital computers use transistors as a basic mechanism for storing and moving data. The device can be produced at a very large scale due to its large integration density and simple and standard fabrication process [2]. The drift of scaling was predicted by Moore's law, according to which the transistor count on an integrated circuit doubles every 18 months. Alternative gate materials with dielectric constant higher than than of SiO<sub>2</sub> help to keep up with the trends of Moore's law [3, 4]. The layers of these high - k materials can be grown thick to reduce the direct tunneling current through gate.

## II. MOSFET: DEVICE OPERATION AND STRUCTURE

We used the simplest two dimensional three terminal device model for n-type MOSFET as shown below in Fig. 1. It is called an NMOS transistor because the major charge carriers that form current are negatively charged electrons. The fourth terminal called body is not considered due to its secondary function in the MOSFET operation.

Positive voltage is applied to gate terminal to create the channel between drain and source region. The performance of high speed logic circuits depend on source-drain saturation current called drive current. The source-drain saturation current for an n-type MOSFET can be written as the following equation [5, 6]

$$I_{d} = \frac{\beta_{n} (V_{gs} - V_{t})^{2}}{2}$$
(1)

where  $\beta_n$  is conduction parameter of MOSFET and is inversely dependent on gate oxide thickness, d. Hence, mathematically, it can be deduced that



Fig. 1 2-dimensional structure of n-type MOSFET [5, 7]

Decreasing the oxide layer thickness produces high gate capacitance, which leads to more drive current,  $I_d$  for same gate voltage,  $V_g$  [8, 9]. Taking the gate oxide as the parallel plate capacitor, the gate capacitance is defined as the following equation [5, 6]

#### **Publication History**

| Manuscript Received  | : | 12 January 2018  |
|----------------------|---|------------------|
| Manuscript Accepted  | : | 16 January 2018  |
| Revision Received    | : | 5 February 2018  |
| Manuscript Published | : | 15 February 2018 |





where, k is the dielectric constant for gate oxide material,  $E_0$  is the permittivity of free space, and A is the gate area. Once the applied gate voltage is above threshold voltage,  $V_T$  channel is formed between source and drain diffusion region. As we increase the drain voltage, an increase in drain current is observed.

#### III. GATE DIELECTRIC MATERIALS

The fabrication of MOSFET device is a sequence of steps i. e. photo lithographical exposure and etching, material deposition etc, which are executed repeatedly. Each of these steps also consist a number of basic steps. High – k gate dielectrics can be easily deposited by atomic layer deposition (ALD) [10]. The dielectric constant of a material depends on the deposition method, composition and microstructure of the material. Generally, a high-k oxide material should satisfy the following properties:

- High dielectric constant: Initially, due to high production cost of alternative gate oxide material, the dielectric constant of material should be sufficiently large to support the performance improvements of IC industry [11, 12].
- Band gap and barrier height: To reduce gate leakage current, sufficient band gap of gate oxide material is required [13]. Also the barrier height of gate oxide material is important as it affects the gate tunnelling current [14].
- 3) Thermodynamically stability: At high temperature, the amorphous gate oxide material may change into crystals. The material in this form may lead to additional conduction path for leakage current through gate [15]. It may result into formation of low k oxide interface
- Interface quality: The possibility of formation of silicates at high – k gate material and Silicon should be avoided, as it may create additional conduction path for gate leakage current [16].

- Process compatibility: The high k gate material must be compatible with current CMOS fabrication process flow and other materials used in CMOS integrated circuits.
- 6) Fixed oxide charge: The oxide-substrate interface must have minimum oxide fixed charges and interface trap charges to minimize carrier scattering at the underlying channel [10, 17]. The presence of these charges in at the interface reduces the mobility of charge carrier in channel.
- 7) Good reliability and long life time: Reliability of high k gate structures may be influenced by the interfacial layer as well as high – k oxide layer. Due to charge trapping at oxide interface, serious reliability issues occur due to instabilities in threshold voltage, V<sub>T</sub>. There is a clear linkage between performance and reliability issues of a MOSFET device [18].

A variety of dielectric materials has been developed for gate oxide. Here, we have considered only four popular materials, which are listed in Table 1.

#### A. $SiO_2$

The most common amorphous oxide material used for MOSFET gate is SiO<sub>2</sub>. This material offers following interesting properties of:

- 1) Large band gap i.e. ~ 9eV.
- 2) Good thermodynamic stability on Silicon surface
- 3) Easy to grow thermally on Silicon surface with high quality.

| S.<br>No. | Material                       | Dielectric<br>constant (k) | Crystal<br>Structures          |
|-----------|--------------------------------|----------------------------|--------------------------------|
| 1         | SiO <sub>2</sub>               | 3.9                        | Amorphous                      |
| 2         | Al <sub>2</sub> O <sub>3</sub> | 9                          | Amorphous                      |
| 3         | HfSiO <sub>4</sub>             | 11                         | Monoclinic<br>tetragonal cubic |
| 4         | HfO <sub>2</sub>               | 25                         | Monoclinic<br>tetragonal cubic |

### Table 1 Different Oxide Materials with Their Dielectric Constant and Crystal Structures [19]

#### B. $Al_2O_3$

This material has the appealing property of large band gap, good stability, amorphous and robust on Silicon against formation of  $SiO_2$  [12]. However, it can be used for short term at gate electrode due to its low value of  $k_{ox}$  which lies between 8 and 10, which limits its capability to increase drive current in MOSFETs. Also significant mobility degradation has been observed in this case.

#### C. $HfO_2$ and $HfSiO_4$

Usually, the high – k materials have small band gap which leads to more gate leakage current. But  $HfO_2$  can be effectively used to replace  $SiO_2$  due to its large band gap. These two materials are members of Pseudobinary alloy

family  $(HfO_2)_x(SiO_2)_{1-x}$ . Hafnium oxide  $(HfO_2)$  is a colorless inorganic compound with a band gap of 5.3~5.7 eV and commonly known as hafnia [3, 20]. The crystal structure of such dielectrics is monoclinic tetragonal cubic. The material is quite inert with its high - k value of 25 as shown in Table 1. Due to high value of band gap,  $E_g$  leakage current decreases in layers of such materials. Amorphous HfO<sub>2</sub> is deposited to form the gate oxide layer in modern semiconductor technology. The layers of these materials are stable on Si upto high temperatures [21, 22]. The material HfSiO<sub>4</sub> is formed by alloying hafnium oxide with silicon known as hafnium silicate. It gives the advantage of increased crystallization temperature and melting point of hafnium oxide.

#### IV. EXPERIMENTAL SET-UP

The simulation tool *MOSFETsim* was used, which displays drain current as a function of source-drain voltage for different values of gate voltage, gate dimensions, substrate material and oxide material in an n-type MOSFET [23]. The values of critical parameters like channel length,  $L_n = 100$  nm, gate voltage  $V_g = 3V$  were taken for n-MOS device on p-type substrate with  $n_i = 1.5 \times 10^{16}$  and  $k_{sub} = 11.9$ .

#### V. RESULTS AND DISCUSSION

As we decrease the oxide thickness, the gate voltage becomes more effective to invert the underlying channel region, which results in an ease of channel formation. Also the type of gate oxide material plays an important role. In case of SiO<sub>2</sub> as the dielectric material, it is observed that for gate voltage,  $V_g = 3V$ , the channel was not formed for oxide layer thickness above 50 nm. It is due to insufficient channel formed under gate due to large oxide thickness. The drain current starts to flow after thickness of gate oxide layer reduces to 50 nm and less as shown below in Table 2.

## Table 2. Drain Current I<sub>d</sub> with Different Gate Dielectric Materials

| S   | Gate<br>oxide<br>thicknes<br>s, d<br>(nm) | Drain current, $I_d$ (mA) for different Gate dielectric materials |                                                    |                                           |                                         |
|-----|-------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------|-----------------------------------------|
| No. |                                           | I <sub>d</sub> with<br>SiO <sub>2</sub>                           | I <sub>d</sub> with Al <sub>2</sub> O <sub>3</sub> | I <sub>d</sub> with<br>HfSiO <sub>4</sub> | I <sub>d</sub> with<br>HfO <sub>2</sub> |
| 1   | 100                                       | 0                                                                 | 0.2171                                             | 0.5554                                    | 4.0969                                  |
| 2   | 90                                        | 0                                                                 | 0.3791                                             | 0.8056                                    | 4.8779                                  |
| 3   | 80                                        | 0                                                                 | 0.6163                                             | 1.1476                                    | 5.867                                   |
| 4   | 70                                        | 0                                                                 | 0.9446                                             | 1.6191                                    | 7.1526                                  |
| 5   | 60                                        | 0                                                                 | 1.4443                                             | 2.2871                                    | 8.8824                                  |
| 6   | 50                                        | 0.0659                                                            | 2.2003                                             | 3.2686                                    | 11.3271                                 |
| 7   | 40                                        | 0.3359                                                            | 3.4062                                             | 4.801                                     | 15.0192                                 |
| 8   | 30                                        | 0.9938                                                            | 5.5093                                             | 7.4276                                    | 21.2103                                 |
| 9   | 25                                        | 1.6157                                                            | 7.236                                              | 9.5643                                    | 26.1771                                 |
| 10  | 20                                        | 2.6297                                                            | 9.8572                                             | 12.7998                                   | 33.6547                                 |

| 11 | 15 | 4.4268 | 14.2784 | 18.2376 | 46.109  |
|----|----|--------|---------|---------|---------|
| 12 | 10 | 8.1819 | 23.1929 | 29.1653 | 71.0329 |

It is also analyzed that for other oxide materials like  $Al_2O_3$ ,  $HfSiO_4$  and Hafnium, the drain current starts to flows for oxide layer thickness even at 100nm. In general, it is observed from the Fig. 3, as we scale down the gate oxide thickness, more current flows in channel region. For the high - k material like  $HfO_2$  we observed that for same gate voltage,  $V_g$ , more drain current is flowing. It is due to high permittivity,  $\mathcal{E}_{ox}$  offered by the materials like  $Al_2O_3$ ,  $HfSiO_4$  and  $HfO_2$ . Among the four oxide materials i. e.  $SiO_2$ ,  $Al_2O_3$ ,  $HfSiO_4$  and  $HfO_2$ , the last one produces the maximum current for same gate voltage as shown below in Fig 3.





But, as  $HfO_2$  may not be the best choice in the applications, which requires high crystallization temperature. In such cases, hafnium doped with silicon i.e. hafnium silicate like  $HfSiO_4$  may be a better choice.

#### VI. CONCLUSION

The choice of gate dielectric material plays a key role in channel inversion. The use of high k-materials like hafnium/hafnium silicates results into more drain current for same oxide thickness.

#### REFERENCES

- [1] M. Gutowski, J. E. Jaffe, C.-L. Liu, M. Stoker, R. I. Hegde, R. S. Rai, et al., "Thermodynamic stability of high-k dielectric metal oxides ZrO<sub>2</sub> and HfO<sub>2</sub> in contact with Si and SiO<sub>2</sub>," Applied Physics Letters, vol. 80, pp. 1897-1899, 2002.
- [2] International TecPhnology Roadmap for Semiconductors, 2001. International SEMATECH, Austin, TX. [Online]. Available: http://public.itrs.net/
- [3] C. Mead, "Scaling of MOS technology to submicrometer feature sizes," *Analog Integrated Circuits Signal Process.*, Journal of VLSI Signal Processing, Kluwer Academic Publishers, Boston, vol. 6, pp 9-25, 1994.
- [4] J. Brews, S. M. Sze, *High Speed Semiconductor Devices*, Ed. New York: Wiley, 1990.
- [5] Han, Lei, "Investigation of Gate Dielectric Materials and Dielectric/Silicon Interfaces for Metal Oxide Semiconductor Devices", 2015.
- [6] J. M. Rabey, A. Chandrakasan, and B. Nikolic, "Digital Integrated Circuits," 2<sup>nd</sup> Edition, Pearson Publication, 2005.
- [7] Weste, N., and Harris, D., Principles of CMOS VLSI Design.Pearson Education, 4<sup>th</sup> Edition, Boston, MS, 2011.
- [8] R. Jacob Baker, "CMOS Circuit Design, layout and simulation," IEEE Press, pp. 613, 636, 2005.

- [9] Y. Taur and T. H. Ning, *Fundamentals of ModerenVLSI Devices*. New York: Cambridge Univ. Press, 1998.
- [10] http://shodhganga.inflibnet.ac.inbitstream106035860707\_chapter %201.pdf.
- [11] L. Colombo, J. Chambers, and H. Niimi, "Gate Dielectric Process technology for the sub-1nm equivalent Oxide thickness (eOt) era," INTERFACE-PENNINGTON-, vol. 16, p. 51, 2007.
- [12] L. Manchanda, W. Lee, J. Bower, F. Baumann, W. Brown, C. Case, et al., "Gate quality doped high K films for CMOS beyond 100 nm: 3-10 nm Al/sub 2/O/sub 3/with low leakage and low interface states," in Electron Devices Meeting, 1998. IEDM'98. Technical Digest., International, 1998, pp. 605-608.
- [13] S. Chen, C. Lai, A. Chin, J. Hsieh, and J. Liu, "High-density MIM capacitors using Al<sub>2</sub>O<sub>3</sub> and AlTiO<sub>x</sub> dielectrics," Electron Device Letters, IEEE, vol. 23, pp. 185-187, 2002.
- [14] S. Grove, Physics and Technology od Semiconductor Devics. New York: Wiley, 1967.
- [15] S. Guha, E. Gusev, H. Okorn-Schmidt, M. Copel, L.-A. Ragnarsson, N. Bojarczuk, et al., "High temperature stability of Al<sub>2</sub>O<sub>3</sub> dielectrics on Si: Interfacial metal diffusion and mobility degradation," Applied Physics Letters, vol. 81, pp. 2956-2958, 2002.
- [16] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, John Wiley & Sons, New York (1982).
- [17] R. Piierret, Semiconductor Device Fundamentals. Reading, MA: Addison-Wesley, 1996.
- [18] G. Ribes et al., "Review on high-k dielectrics reliability issues," in *IEEE Transactions on Device and Materials Reliability*, vol. 5, no. 1, pp. 5-19, March 2005.
- [19] Levinstein, M E., S Rumyantsev, and M Shur, eds. Handbook Series on Semiconductor Parameters. London: World Scientific, 1999. Semiconductors on NSM. Web. 19 Jan. 2014. http://www.ioffe.ru/SVA/NSM/Semicond/
- [20] J. Robertson, "Band offsets of wide-band-gap oxides and implications for future electronic devices, "Journal of Vacuum Science & Technology", vol. 18, pp. 1785-1791, 2000.
- [21] S. Hall, O. Buiu, I. Z. Mitrovic, Y. Lu, and W. M. Davey, "Review and perspective of high-k dielectrics on silicon, "Journal of Telecommunications and Information Technology", pp. 33-43, 2007.
- [22] J.-H. Hong, T.-H. Moon, and J.-M. Myoung, "Microstructure and characteristics of the HfO<sub>2</sub> dielectric layers grown by metalorganic molecular beam epitaxy," Microelectronic engineering, vol. 75, pp. 263-268, 2004.
- [23] Pierret, Robert F. Semiconductor Device Fundamentals. N.p.: Pearson College Div, 1996. 572-618.