eISSN:2278-5299

International Journal of Latest Research in Science and Technology

DOI:10.29111/ijlrst   ISRA Impact Factor:3.35,  Peer-reviewed, Open-access Journal

A News Letter Sign UP!
EVALUATION OF POTENTIAL DESIGNS FOR HIGH PERFORMANCE FUSION ENERGY TECHNOLOGIES

Research Paper Open Access

International Journal of Latest Research in Science and Technology Vol.4 Issue 5, pp 141-148,Year 2015

EVALUATION OF POTENTIAL DESIGNS FOR HIGH PERFORMANCE FUSION ENERGY TECHNOLOGIES

Hossam A.Gabbar, Daniel Bondarenko, Sayf Elgriw , Anas Abdel Rihem

Correspondence should be addressed to :

Received : 29 September 2015; Accepted : 20 October 2015 ; Published : 31 October 2015

Share
Download 126
View 180
Article No. 10582
Abstract

The purpose of this paper is to evaluate a variety of current Hot Fusion technologies that have either accumulated a significant amount of research and experimental data to be justifiably selected as a potential fusion device, or have exceptional theoretical breakthroughs behind their ideas to justify a design for future developmental work. Using KPI’s, and Larson’s Hot Fusion Criteria, each selected design will be reviewed andscored relative to theirkey performance indicators and capacity to meet the triple product parametric requirements needed in order to achieve ignition. This obvious method of evaluation has not been attempted before, and will indeed shed some objective insights on the real performance of these current approaches, without the clouded bias of those supporting particular technologies through personal preference. Engineering aspects and the key performance indicators of each device will also be provided so that both the experts and the novices to the field of Hot Fusion can compare and make their own conclusions.

Key Words   
Fusion Energy Technology Assessment; Fusion Reactor Design Evaluation; KPI Modeli
Copyright
References
  1. T.J. Dolan, Fusion Research, Library of Congress (2000)
  2. A. Gabbar, D. Bondarenko, S. Elgrew, Functional Modeling For The Analysis Of High Density Plasma Experimentation, International Journal of Latest Research in Science and Technology, 3, 5, p 115-120 (2014).
  3. Wesson, Tokamaks 4th Ed, Oxford University Press (2011).
  4. Bezbatchenko, I. N. Golovin, P. I. Kozlov et al., Plasma Physics and Problems of Controlled Fusion 1, 116 (1955).
  5. J. de Blank, Trans. Fusion Sci. Technol. 49, 118 (2006).
  6. Wakatani. Stellarator and heliotron devices. Oxford University Press (1998).
  7. C. Robinson, Phil. Trans. Roy. Soc. A 357, 515 (1999).
  8. Freidberg, Plasma Physics and Fusion Energy, MIT Press, Cambridge, MA (2007).
  9. Y-K.M. Peng and D.J. Strickler, Nucl. Fusion 26, 769(1986).
  10. Sykes,  Plasma Phys. Control. Fusion36, B93 (1994).
  11. D. Stambaugh, et al., General Atomic Reports GA–A22226 (1996).
  12. Sykes, technical Physics 44, 1047 (1999).
  13. A. B. Bodin and A.A. Newton , Nucl. Fusion 20, 1255 (1980).
  14. A. B. Bodin, Nucl. Instrum. And Methods 207, 1 (1983).
  15. A. Baker and W. E. Quinn, Fusion: Magnetic confinement, Part A, Vol 1, Chapter 7, Academic Press (1981).
  16. M. Bellan, Spheromak,Imperial College Press (2000).
  17. R. Jarboe, Plasma Phys. Control. Fusion36, 945 (1994).
  18. V. Burdakov et al. Plasma Physics Control, Fusion 52, 124026, (2010)
  19. K. Sen, IEEE Transactions in Plasma Science, PS-10 (1982)
  20. G. Haines, Physics Letters,6,313(1963)
  21. V. Vikherev, VDKorolev, Plasma Physic Reports, 33, 356 (2007)
  22. Braams C. M., Stott P. E., Nuclear Fusion Half a Century of Magnetic Confinement Fusion Research. MPG books (2002).
  23. Schurman, C. Bobelduk, R.F. De Vries, Plasma Physics, 11, 495 (1969)
  24. Hayase, K. Toi, T. Okuda, Electrical Engineering in Japan, 93, 127 (1973)
  25. Tuszewski, Nucl. Fusion28, 2033 (1988).
  26. C. Steinhauer, Phys. Plasmas 18, 070501 (2011).
  27. L. Wright, Nucl. Fusion30, 1739 (1990).
  28. M. McCracken and P. E. Stott. Fusion: The Energy of the Universe 2005.
  29. T. Farnsworth, U.S. Patent #3258402, (1966)
  30. Ohnishi, Fusion Engineering and Design, 42, 207 (1998)
  31. H. Rider, Phys. Plasmas 2, 6, (1995)
  32. V. Gummersall et al., Phys. Plasmas 20, 102701 (2013)
  33. DOE FY 2015 Congressional Budget Funding by Appropriation by Site
  34. FY_2015_Budget_Fusion_Energy_Sciences, pp.117-152
  35. ITER Facts and Figures: ahttp://www.iter.org/factsfigures
  36. A. Rome, “UST_1, a small, low cost stellarator” (2008), Stellarator News, 118, http://www.ornl.gov/sci/fed/stelnews
  37. Klinger, “Stellarators difficult to build? The construction of Wendelstein 7-X”, Seminar at ITER, Max-Planck-Institut fur Plasmaphysik, 14th April, 2011
  38. Annual Report 2012, Association EURATOM / IPP.CR, INSTITUTE OF PLASMA PHYSICS, v.v.i., ACADEMY OF SCIENCES OF THE CZECH REPUBLIC
  39. http://plasma.usask.ca/people.php
  40. http://www.iter.org/factsfigures
  41. http://www.ipp.mpg.de/16340/stand
  42. Overview of ASDEX Upgrade Results –Development of integrated operating scenarios for ITER
  43. Fusion Ignition Research Experiment, FIREEngineering, Status Report, For Fiscal Year 2000, Contributors: T. Brown, R. Ellis, H.M. Fan, P. Heitzenroeder, C. Kessel, D. Meade, J. Schmidt, R. Woolley, K. Young, I. Zatz (PPPL), J. Schultz, R. Thome, P. Titus (MIT), T. Burgess, B. Nelson, D. Swain, M. Gouge, G. Johnson (ORNL), R. Bulmer (LLNL); M. Ulrickson (SNL), H. Khater, M. Sawan (UW); D. Petti, B. Merrill , L. Cadwallader (INEL), D. Dilling (Consultant); D. Driemeyer, F. Cole, L. Waganer (Boeing), C. Baxi, J. Wesley (GAT); V. Christina, E. Peterson, F. Tepes A. Berger, J. Rathke (AES)
  44. http://home.clara.net/balshaw/tokamak/conventional-large-tokamaks.htm
  45. http://plasma.physics.wisc.edu/people/stafflist.php?group=1
  46. James Glanz, Laser Project Is Delayed and Over Budget, New York Times, August 19, 2000.
  47. New Cost and Schedule Estimates for National Ignition Facility, FYI: The API Bulletin of Science Policy News, American Institute of Physics (2008).
  48. Booth, William, "Fusion's $372-Million Mothball."(1987), Science, Volume 238 ed.: 152-55, U.S., New York.
  49. http://nextbigfuture.com/2013/10/helion-energy-starts-up-fourth-nuclear.html
  50. http://sib.fm/news/2013/11/08/inzhektor-dlja-termojadernogo-reaktora
  51. “Scientific Progress in Magnetic Fusion, ITER, and the Fusion Development Path” (2003), Presentation to the SLAC Colloquium
  52. Gruber, et al., “Overview of ASDEX Upgrade results” (2007), Nucl. Fusion 47, pp. s622-s634
  53. S. Taylor, et al, “Wall stabilization of High Beta Plasmas”(1995), Phys.Plasmas 2(6), pp.2390-2396
  54. T. Lang et al 2014 Nucl. Fusion 54 083009
  55. Kocan et al 2012 Plasma Phys. Control. Fusion 54 085009
  56. https://www.ipp.mpg.de/16195/asdex
  57. http://www.iter.org/factsfigures
  58. Kocan et al 2011 Plasma Phys. Control. Fusion 53 065002
  59. A. Sabbagh, et al.,”Resistive wall stabilized operation in rotating high beta NSTX plasmas”(2006), Nucl. Fusion 46, pp.635-644
  60. Weller, et al., “Interantional Stellarator/Heliotron Database progress on the high beta confinement and operational boundaries”(2009), Nucl. Fusion49, 065016, pp. 1-13.
  61. International Fusion Research Council, “Status report on fusion research” (2005), Nucl. Fusion 45, pp. A1–A28
  62. F. Lyon et al., “Status of the US stellarator reactor study” (1994), Fusion Enginieering and Design 25, pp.85-103
  63. S. STELLARATOR PROGRAM PLAN, NATIONAL STELLARATOR PROGRAM
  64. PLANNING COMMITTEE, https://www.ipp.mpg.de/16900/w7x
  65. Haines, M , A Review of the Dense Z-Pinch , IOP Plasma Physics and Controlled Fusion, vol 53 , no 9, p.1 – 169
  66. Stambaugh, R , A Description of the Spherical Torus Machine in the Fusion Development Facility , , vol , no , p.1 – 15
  67. Liu, Deyong , Fast-ion Studies in the National Spherical Torus Experiment. University of California Irvine ; ed , Vol . ;.2009.
  68. G. R. Geddes, T. W. Kornack, and M. R. BroWN, , Scaling studies of spheromak formation and equilibrium , Physics of Plasmas , vol 5 , no 4, p.1 – 8
  69. L. Hagenson* R. A. Krakowski C. G. Bathke R. L Miller M. J. Embrechts" N. M. Schnurr M. E. Battat R. J. LaBauve J. W. Davidson, , Compact Reversed-Field Pinch Reactors (CRFPR) , Los Alamos National Laboratory , vol , no , p.1 – 408
  70. R. BOLTON, P. CHOI, A.E. DANGOR, A.J.H. GODDARD, M.G. HAINES, S.J. PEERLESS, A. POWER and S.P. WALKER, , The Dense Z-Pinch as a Fusion Reactor: A First Technical Appraisal , Fusion Engineering and Design , vol 10 , no , p.1 – 5
  71. Michael Paluszek, Ms. Stephanie Thomas, Mr. Yosef Razin, Dr. Gary Pajer, , Princeton Field Reversed Configuration Reactor for Spacecraft Propulsion , Princeton Satellite Systems inc , vol , no , p.1 – 13
  72. Jaeyoung Park,1, Nicholas A. Krall,2 Paul E. Sieck,1 Dustin T. Oermann,1 Michael Skillicorn,1 Andrew Sanchez,1 Kevin Davis,1 Eric Alderson,1 and Giovanni Lapenta3, , High Energy Electron Confinement in a Magnetic Cusp Configuration , Cornell University , vol , no arXiv:1406.0133, p.1 – 12
To cite this article

Hossam A.Gabbar, Daniel Bondarenko, Sayf Elgriw , Anas Abdel Rihem , " Evaluation Of Potential Designs For High Performance Fusion Energy Technologies ", International Journal of Latest Research in Science and Technology . Vol. 4, Issue 5, pp 141-148 , 2015


Responsive image

MNK Publication was founded in 2012 to upholder revolutionary ideas that would advance the research and practice of business and management. Today, we comply with to advance fresh thinking in latest scientific fields where we think we can make a real difference and growth now also including medical and social care, education,management and engineering.

Responsive image

We offers several opportunities for partnership and tie-up with individual, corporate and organizational level. We are working on the open access platform. Editors, authors, readers, librarians and conference organizer can work together. We are giving open opportunities to all. Our team is always willing to work and collaborate to promote open access publication.

Responsive image

Our Journals provide one of the strongest International open access platform for research communities. Our conference proceeding services provide conference organizers a privileged platform for publishing extended conference papers as journal publications. It is deliberated to disseminate scientific research and to establish long term International collaborations and partnerships with academic communities and conference organizers.